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ABSTRACT: Collision-avoidance is a crucial 

research topic in robotics. Designing a collision-

avoidance algorithm is still a challenging and open 

task, because of the requirements for navigating in 

unstructuredand dynamic environments using 

limited payload and computing resources on board 

micro aerial vehicles. This article presents a novel 

depth-based collision-avoidance method for aerial 

robots, enabling high-speed flights in dynamic 

environments. First of all, a depth-based Euclidean 

distance field mapping algorithm is 

generated.Then, the proposed Euclidean distance 

field mapping strategy is integrated with a rapid-

exploration random tree to construct a collision-

avoidance system. The experimental results show 

that the proposed collision-avoidance algorithm has 

a robust performance at high flight speeds in 

challenging dynamic environments. The 

experimental results show that the proposed 

collision-avoidance algorithm can perform faster 

collision-avoidance maneuvers when compared to 

the state-of-art algorithms (the average computing 

time of the collision maneuver is 25.4 ms, while the 

minimum computing time is 10.4 ms). The average 

computing time is six times faster than one baseline 

algorithm. Additionally, fully autonomous flight 

experiments are also conducted for validating the 

presented collision-avoidance approach. 

KEYWORDS: Micro aerial vehicles; collision-

avoidance; distance field; depth sensor 

 

I. INTRODUCTION 
Convolution Neural Networks (CNN s), 

have shown great potential in image analysis. One 

problem with training machine learning models on 

images is that the use of datasets that are small and 

lack of diversity ends up in ineffective and 

inaccurate outcomes.  

As reasoning in 3D image is the key for 

applications in robotics, virtual reality or data 

augmentation, many recent works consider the task 

of 3D-aware image synthesis,  aiming at 

photorealistic image generation with specific 

control over the camera pose. In contrast to 2D 

generative adversarial networks, approaches for 

3D-aware image synthesis learn a 3D scene 

representation that is explicitly mapped to an image 

using differentiable rendering techniques, thus 

providing control over each scene content and 

viewpoint. Since 3D supervision or posed images 

are often hard to obtain in practice, recent works 

try and solve this task using 2D supervision only. 

Towards this goal, existing approaches generate 

discretized 3D representations, i.e., a voxel-grid 

representing either the total 3D object or 

intermediate 3D features. While modeling the 3D 

object in color space allows for exploiting 

differentiable rendering, the cubic memory growth 

of voxel-based representations limits to low 

resolution and leads to visible artifacts[14]. 

Intermediate 3D features are more compact and 

scale better with image resolution. 

Voxel-based approaches for 3D-aware 

image synthesis either generate a voxelized 3D 

model (e.g., PlatonicGAN[6]) or learn associated 

abstract 3D feature representation (e.g., 

HoloGAN). This ends up in discretization artifacts 

or degrades view-consistency of the generated 

images because of the learned neural projection 

function. 
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Fig: 1 Rendering a 2D image into 3D image 

 

In this paper, a generative model for neural 

radiance fields (bottom) is introduced, which 

represents the scene as a continuous function ‘gθ’ 

that maps a location ‘x’ and also viewing direction 

‘d’ to a colour value ‘c’ and a volume density ‘σ’. 

This model permits for generating 3D consistent 

images at high spatial resolution. It visualizes 3D 

consistency by running a multi-view stereo 

algorithm (COLMAP) on several outputs of each 

method (right). It is important to note that all models 

have been trained using 2D supervision only (i.e., 

from unposed RGB images).In this paper, a trial to 

demonstrate that the dilemma between coarse 

outputs and entangled latent will be resolved using 

conditional radiance fields has been made, a 

conditional variant of a recently planned continuous 

representation for novel view synthesis. 

Specifically, this proposed method creates the 

following contributions:  

i)Propose GRAF, a generative model for radiance 

fields for high-resolution 3D-aware image synthesis 

from unposed images.  

ii)Introduction to a patch-based discriminator that 

samples the image at multiple scales and that is key 

to find out high-resolution generative radiance fields 

efficiently.  

iii)Evaluate the proposed approach on synthetic and 

real datasets.  

This approach compares favourably to state-of-the-

art methods in terms of visual fidelity [3] and 3D 

consistency whereas generalizing to high spatial 

resolutions. 

 

II. RELATED WORK 
3D Aware image synthesis: Learning-based 

novel view synthesis has been intensively 

investigated within the literature. These methods 

generate unseen views from the same object and 

usually need camera viewpoints as supervision. 

Whereas recent works generalize across different 

objects without requiring to train an individual 

network per object, they do not yield a full 

probabilistic generative model for drawing 

unconditional random samples. Previously proposed 

methods require 3D supervision or assume 3D 

information as input[10]. E.g. Texture Fields 

synthesize novel textures conditioned on a particular 

3D shapeThe proposed model learns a generative 

model for each shape and texture from 2D images 

alone. Some of the defined models like 

PlatonicGAN learns a textured 3D voxel 

representation from 2D images using differentiable  

rendering techniques[4]. However, such voxel-based 

representations are memory intensive, precluding 

image synthesis at high image resolutions.  

In this paper, the proposed model tries to 

avoid those memory limitations by using a 

continuous representation that permits for rendering 

images at arbitrary resolution. HoloGAN [6] and 

some related works learn a low-dimensional 3D 

feature combined with a learnable 3D-to-2D 

projection. However, as proven by random 

experiments, learned projections will result in 

entangled latent (e.g., object identity and 

viewpoint), particularly at high resolutions. Whereas 

3D consistency can be encouraged using additional 

constraints, we take advantage of differentiable 

volume rendering techniques which do not need to 

be learned and thus incorporate 3D consistency into 

the generative model by design. 

Implicit Representations:Recently, implicit 

representations of 3D geometry have gained quality 

in learning-based 3D reconstruction. Key 

advantages over voxel or mesh-based methods are 

that they do not discretize space and are not 

restriced in topology. Recent hybrid continuous grid 

representations extend implicit representations to 

complicated or large scale scenes but require 3D 

input and do not consider texture. Another line of 

works proposes to learn continuous shape and 

texture representations from posed multi-view 

images only, by making the rendering process 
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differentiable. As these models are limited to single 

objects or scenes of little geometric complexity 

propose to represent scenes as neural radiance fields 

that allow for multi-view consistent novel-view 

synthesis of more complicated, real-world scenes 

from posed 2D images. They demonstrate 

compelling results on this task, however, their 

method needs several posed views, needs to be 

retrained for every scene, and can’t generate novel 

scenes 

 

III. METHOD 
This proposed work considers the matter of 

3D-aware image synthesis, i.e., the task of 

generating high-fidelity images whereas providing 

explicit control over camera rotation and translation. 

It is a point of discussion to represent a scene by its 

radiance field as such a continuous representation 

scales well with respect to image resolution and 

memory consumption whereas allowing a 

physically-based and parameter-free projective 

mapping within the following, the model was 

initialized in brief review of Neural Radiance Fields 

(NeRF)[1] that forms the idea for the proposed 

Generative Radiance Field (GRAF) model.  

 

3.1 Neural Radiance Field: 

Neural Radiance Fields NeRF or higher 

referred to as Neural Radiance Fields [2] is a state-

of-the-art method that generates novel views of 

complicated scenes by optimizing an underlying 

continuous volumetric scene function using a sparse 

set of input views. The input will be provided as a 

blender model or a static set of images. 

 

3.1.1 Positional encoding 

A radiance field could be a continuous 

mapping from a 3D location and a 2D viewing 

direction to an RGB colour value. It first maps a 3D 

location x ∈ R3 and a viewing direction d ∈ S2 to a 

higher-dimensional feature representation using a 

fixed positional encoding that is applied element-

wise to all three elements of x and d: 

 

γ(p) = (sin(20πp), cos(20πp), sin(21πp), cos(21πp), 

sin(22πp), cos(22πp), …)  (1) 

Above figure shows the proposed model. 

The generator Gθ takes camera matrix K, camera 

pose ξ, 2D sampling pattern ν and shape/appearance 

codes zs ∈ R m/za ∈ R n as input and predicts an 

image patch P’. The discriminator Dφ compares the 

synthesized patch P’ to a patch P extracted from a 

real image I.  

At inference time, it predicts one colour value for 

every image pixel. However, at training time, this is 

too expensive. Therefore, the model instead predict 

a fixed patch of size K × K pixels which is randomly 

scaled and rotated to provide gradients for the entire 

radiancefield. 

 

 
 

3.2.1Generator 

The model samples the camera matrix K, 

the intrinsic parameters, the camera pose psi(ξ) 

which are the extrinsic parameter and a patch 

sampling pattern  v.  

ν = (u, s) determines the center u = (u, v) ∈ R2 and 

scale s ∈ R + of the virtual K × K patch P(u, s) 

which is aimed to generate. This permits the model 

to use a convolutional discriminator independent of 

the image resolution. It arbitrarily draws the patch 

centre u ∼ U(Ω) from a uniform distribution over 

the image domain Ω and the patch scale s from a 

uniform distribution s ∼ U([1, S]) where S = 

min(W, H)/K with W and H denoting the width and 

height of the target image.  

Moreover, it makes sure that the entire 

patch is within the image domain Ω. The shape and 

appearance variables zs and za are drawn from 

shape and appearance distributions zs ∼ps and za ∼ 

pa, severally. In random experiments the model uses 

a standard Gaussian distribution for both ps and pa 

[10]. 

 

Ray Sampling:  

 

 P(u, s) = { (sx + u, sy + v)   |  x, y ∈ { − 
K

2
 , . . . , 

K

2
 − 1 }                                     (5)         
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The K × K patch P(u, s) is determined by 

a set of 2D image coordinates which describe the 

location of every pixel of the patch in the image 

domain Ω. Note that these coordinates are real 

numbers, not discrete integers that permits us to 

continuously evaluate the radiance field. The 

corresponding 3D rays are uniquely determined by 

P(u, s), the camera pose ξ and the intrinsic K. Here, 

the model denotes the pixel/ray index by r, the 

normalized 3D rays by dr and the number of rays 

by R where R = K2 during training and R = W H 

during inference. 

 

 
Fig. 3: Ray Sampling on images 

 

3D Point Sampling: To approximate the 

intractable volumetric projection integral propose a 

stratified sampling approach that allows to query 

the network at continuous intervals instead of a 

discretized grid.[12] 

 

 
 

Conditional Radiance Field: The radiance field is 

denoted by a deep fully-connected neural network 

with parameters θ that maps the positional 

encoding (cf. Eq. (1)) of 3D location x ∈ R
3
 and 

viewing direction d ∈ S
2
 to an RGB colour value c 

and a volume density σ:  

 

 
 

 
Fig. 5: Conditional Radiance Field 

 

The network architecture of the proposed 

conditional radiance field gθ is illustrated above.  

It first computes a shape encoding h from 

the positional encoding of x and the shape code zs. 

A density head σθ transforms this encoding to the 

volume density σ. For predicting the colorc at 3D 

location x, it concatenates h with the positional 

encoding of d and the appearance code za and pass 

the resulting vector to a color head cθ. The model 

computes σ independently of the viewpoint d and 

the appearance code za to encourage multi-view 

consistency whereas disentangling shape from 

appearance. This encourages the network to use the 

latent codes zs and za to model shape and 

appearance, respectively, and allows for 

manipulating them separately during inference.[9] 

More formally: 

 

hθ : R
Lx

 × R
Ms

 → R
H
           (γ(x), zs) 7→ h (7)  

 

cθ : R
H
 × R

Ld
 × R

Ma
 → R

3
 

 (h(x, zs), γ(d), za) 7→ c   (8) \ 

σθ : R
H
 → R +h(x, zs) 7→ σ  (9)  

 

All mappings (hθ, cθ and σθ) are implemented 

using fully connected networks with ReLU 

activations. To avoid notation clutter, the equation 

uses the same symbol θ to denote the parameters of 

each network. 

 

 
Fig. 6: Discriminator Model 

 

The discriminator classifies each real data 

and fake data from the generator. The 

discriminator's training data comes from two 

sources first is Real data instances, such as real 

pictures of people. The discriminator uses these 

instances as positive examples during training and 

also the second is Fake data instances created by 

the generator. The discriminator uses these 

instances as negative examples throughout 

training.[8] 

Here, The discriminator Dφ is 

implemented as a convolutional neural network 

which compares the predicted patch P’ to a patch P 

extracted from a real image I drawn from the data 

distribution pD. For extracting a K × K patch from 

real image I, first draw ν = (u, s) from the same 

distribution pν which will be used for drawing the 

gθ : RLx × RLd × RMs × RMa → R3 × R+       (γ(x), γ(d), zs, za) → (c, σ) (6) 
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generator patch above. The model then samples the 

real patch P by querying I at the 2D image 

coordinates P(u, s) using bilinear interpolation. In 

the following, the model uses Γ(I, ν) to denote this 

bilinear sampling operation. Note that this 

discriminator is similar to PatchGAN, except that it 

allows for continuous displacements u and scales s 

while PatchGAN uses s = 1. It’s more necessary to 

notice that it does not downsample the real image I 

based on s, but instead query I at sparse locations to 

retain high-frequency details. 

 

IV. EXPERIMENT 
Datasets: The model considered two synthetic 

datasets in our experiments. To analyze the 

approach in a controlled setting, the model 

rendered 150k Chair images from 

Photoshapes[16,19]. Also, the Carla Driving 

simulator[15] was used to create 10k images of 18 

car models with randomly sampled colors and 

realistic texture and reflectance properties (Cars). 

The model validated the proposed approach on 

three real-world datasets. It used the Faces dataset 

which comprises celebA and celebA-HQ for 

imagesynthesis up to resolution 128
2
 and 512

2
 

pixels, respectively. In addition, the Cats dataset 

and the Caltech-UCSD Birds-200-2011 dataset was 

considered. 

Baselines: The proposed approach was 

compared to two state-of-the-art models for 3D-

aware image synthesis using the authors’ 

implementations [12,13]: PlatonicGAN generates a 

voxel-grid of the 3D object which is projected to 

the image plane using differentiable volumetric 

rendering. HoloGAN[6] instead generates an 

abstract voxelized feature representation and learns 

the mapping from 3D to 2D using a combination of 

3D and 2D convolutions. To analyze the 

consequences of a learned projection this approach 

considers a modified version of HoloGAN 

(HoloGAN w/o 3D Conv) in which it reduces the 

capacity of the learned mapping by removing the 

3D convolutional layers. For reference, the 

proposed model also compared the results to a 

state-of-the-art 2D GAN model with a ResNet 

architecture[6,20]. 

 

 

 
 

The following table describes the 

comparison of Camera Pose Interpolations for Cars 

and Chairs at image resolution 642 pixels for 

PlatonicGAN, HoloGAN and the proposed 

Approach[17]. 

 

 Cha

irs 

Bird

s 

Car

s 

Cat

s 

Face

s 

2D- GAN 59 24 66 18 15 

PlatonicGA

N 

199 179 169 318 321 

HoloGAN 59 78 134 27 25 

Proposed 

Model 

(Ours) 

34 47 30 26 25 

 

Table 1: FID at Image resolution 64
2
 pixels 

 

This approach quantifies image fidelity 

using the Frechet Inception Distance (FID) and 

additionally report the Kernel Inception Distance 

(KID). To assess 3D consistency, the approach 

performs 3D reconstruction for images of size 2562 

pixels using COLMAP. The proposed approach 

adopts Minimum Matching Distance (MMD) to 

measure the chamfer distance (CD) between 100 

reconstructed shapes and their closest shapes in the 

ground truth for quantitative comparison and 

showqualitative results for the reconstructions. 

 

Compare generative radiance field with voxel-

based approaches: 

The proposed model is first compared 

against the baselines using an image resolution of 

642 pixels. All of the methods are able to 

disentangle object identity and camera viewpoint.  

However, PlatonicGAN has difficulties in 

representing thin structures and both PlatonicGAN 

and HoloGAN lead to visible artifacts in 

comparison to the proposed model. This is also 

reflected by larger FID scores in Table 1. On Faces 

and Cats, HoloGAN achieves FID scores same as 

our approach as each datasets exhibit only little 

variation in the azimuth angle of the camera 

whereas the other datasets cover larger viewpoint 

variations[18]. This implies that it’s more harder 

for HoloGAN to accurately capture the appearance 

of objects from different viewpoints due to its low-

dimensional 3D feature representation and also the 

learnable projection. In contrast, the continuous 

representation of the proposed approach doesn’t 

need a learned projection and renders high-fidelity 

images from arbitrary views. 
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Fig. 8:3D Reconstuction 

 

 
Table 2:   Reconstuction Accuracy 

 

 
 

Fig.9:Disentangling Shape /Appearance[7] 

 

V. CONCLUSION 
Generative Radiance Fields (GRAF) has 

been utilized for high-resolution 3D-aware image 

synthesis for reducing the reconstruction 

disentanglement and improving the accuracy of 

rendering the 2D image to a 3D image, as 

compared to PlatonicGAN and HoloGAN. The 

proposed method  shows that this framework is 

able to generate high resolution images with better 

multi-view consistency compared to voxel-based 

approaches. However, the results are limited to 

simple scenes with single objects. It has been 

observed that incorporating inductive biases, e.g., 

depth maps or symmetry, will allow for extending 

the model to even more challenging real-world 

scenarios in the future. 
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